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Weighted scale-free networks with topology-dependent interactions are studied. It is shown that the possible
universality classes of critical behavior, which are known to depend on topology, can also be explored by
tuning the form of the interactions at fixed topology. For a model of opinion formation, simple mean field and
scaling arguments show that a mapping ��= ��−�� / �1−�� describes how a shift of the standard exponent � of
the degree distribution can absorb the effect of degree-dependent pair interactions Jij � �kikj�−�, where ki stands
for the degree of vertex i. This prediction is verified by extensive numerical investigations using the cavity
method and Monte Carlo simulations. The critical temperature of the model is obtained through the Bethe-
Peierls approximation and with the replica technique. The mapping can be extended to nonequilibrium models
such as those describing the spreading of a disease on a network.
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I. INTRODUCTION

In recent years �1,2� it has become clear that many natural
and technological networks are quite different from simple
random networks �3� and share several unexpected properties
such as a scale-free degree distribution �1,2�, small world
connectivity �4�, soft modularity �meaning that the network
consists of different modules whose mutual interactions are
suppressed but not completely eliminated �5��, and so on.
Much work has gone into a precise characterization of these
topological properties for a variety of networks as diverse as
the internet �6�, metabolic networks in cells �7� or networks
of chemical reactions in planetary atmospheres �8�. Non-
trivial topology is now established as an essential ingredient
of complex systems �9�. This observation naturally raises the
question of how these structures are formed and grow. A well
known mechanism is that of preferential attachment which
leads to the Barabási-Albert network with a power-law de-
gree distribution �10�.

Another important question is how the network topology
affects physical properties such as collective behavior, trans-
port quantities, the spreading of a disturbance, etc. Particular
interest has been devoted to the behavior of the Ising model
on a network. Besides being the standard model of �equilib-
rium� statistical mechanics, the Ising model is also expected
to give a simple description of sociological phenomena such
as opinion formation �11�. The first studies of this model
indicated �12� that on a Barabási-Albert network, the Ising
model is always ordered. It was, however, soon realized that
a finite transition temperature can be obtained if one consid-
ers the Ising model on scale-free networks with a degree
distribution that is less long ranged than that of the Barabási-
Albert one �13,14�. Even more interesting is the observation
of nontrivial critical behavior for these cases �13–16�.

Another mechanism that leads to a finite transition tem-
perature was discovered by one of us in the so-called special

attention network. This is a model of a weighted network
where the interactions between connected spins are made
topology-dependent �17�. A further investigation of that and
related models then led to the discovery that topology and
interaction can be “traded,” in the sense that the effect of a
change in interaction law can be transformed away by an
appropriate change of the degree distribution law. In the
present paper we present a detailed investigation of the criti-
cal behavior of the Ising model with degree-dependent inter-
actions. We also discuss the extension of our results to non-
equilibrium situations. A summary of our results was
published earlier �18�.

This paper is organized as follows. In the next section, we
define the model and present the results of a simple mean
field theory. In Sec. III, we study the model with the cavity
approach. In Sec. IV, we describe the application of the
Bethe-Peierls method and the replica technique to our model.
In Sec. V, we present the results of extensive Monte Carlo
simulations. In Sec. VI, we discuss the extension of our main
result to a nonequilibrium process. Finally, we present our
conclusions in Sec. VII.

II. MODEL

Our model can be defined on a general network �or
graph�. When in a graph a vertex �or node� i is connected
with ki other nodes we say it has degree ki. We will mostly
have in mind a scale-free network for which the degree is a
random variable whose distribution P�k� is a power law:
P�k��k−�. We take ��2 so that the average degree Q
=�kP�k�dk is finite. For future reference we also introduce
the notation Q2 for the second moment of P�k�. The
Barabási-Albert �BA� network has �=3 �10�. The number of
nodes in the network is denoted by N.

We next define an Ising model on this network by associ-
ating to each node i a variable si= ±1 and to each pair of
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linked nodes an energy −Jijsisj. In this paper, we will choose
the couplings Jij to be given by

Jij = JQ2�/�kikj�� �1�

with J�0. For �=0, the behavior of this model has been
investigated by various authors and the critical behavior was
found to depend on � �13–16�. For ��5 the results of stan-
dard mean field theory were found to apply: the critical tem-
perature Tc is finite, the order parameter vanishes with an
exponent 1 /2, and the specific heat has a finite jump at Tc.
When 3���5, the transition temperature remains finite, the
specific heat goes to zero continuously as a function of tem-
perature with an exponent that depends on �. The same is
true for the order parameter. In the borderline case �=5,
logarithmic corrections appear. For all cases with ��3, the
zero-field susceptibility diverges as �T−Tc�−1. Finally, when
2���3, the system is ordered at all temperatures.

When �=1/2, our model corresponds to the special atten-
tion network �SAN� introduced earlier by one of us �17�. A
simple mean field approach showed that on a BA network,
the SAN has a finite transition temperature �17�. We start by
extending that simple approach to the case of general � and
�.

A simple mean field approximation

For a given network realization, the local magnetization
mi= �si� at node i obeys the exact equation

mi = �si� =	tanh
�
j=1

ki Jij

kBT
sj� . �2�

Here �·� is the thermal average, kB is Boltzmann’s constant,
and T is the temperature. Following Bianconi �19�, we now
apply a double mean field approximation to this equation by
rewriting it as

mi = tanh
�
j=1

N
�Jij�
kBT

mj� , �3�

where the sum now runs over all the nodes and �·� denotes
the average over all the realizations of the network with a
fixed set of degrees �ki�. For a BA network the probability pij

that two nodes are connected was shown to be equal to
kikj / �QN� �19�, and we can expect this result to hold in some
other cases �16�. We therefore have

�Jij� = Jijpij =
JQ2�−1

N
�kikj�1−�, �4�

so that Eq. �3� can be rewritten as

mi = tanh
 JQ�

kBT
ki

1−�Q�−1

N �
j=1

N

kj
1−�mj� . �5�

The quantity

S =
Q�−1

N
�
j=1

N

kj
1−�mj �6�

is a convenient order parameter. From Eq. �5� it follows that
S obeys the self-consistency equation

S =
Q�−1

N
�
i=1

N

ki
1−� tanh
 JQ�

kBT
ki

1−�S� . �7�

For N→�, the term on the right hand side is simply related
to the average over the distribution P�k� so that we can re-
write Eq. �7� as

S = Q�−1�
m

�

k1−� tanh
 JQ�

kBT
k1−�S�P�k�dk . �8�

Here m	1 is the lowest degree that is possible in the net-
work. Equation �8� can be analyzed in a standard way. For
example, the critical temperature is determined by assuming
S to be small. After linearization we then obtain

Tc =
JQ2�−1

kB
�

m

�

k2−2�P�k�dk . �9�

For the power-law distribution this gives a finite Tc provided
��3−2�. This is consistent with the earlier finding of a
finite Tc for the SAN on the BA network. One could then go
on and determine, for example, the exponent 
 from a fur-
ther analysis of Eq. �8�. It is, however, more suitable to per-
form the transformation of variables

k� = Q�k1−�. �10�

This gives for the case that the degree distribution is power
law, and for ��1

S = A�
m�

�

�k���1−��/�1−�� tanh
 Jk�S

kBT
�dk�, �11�

where A is a constant and m�=Q�m1−�. Comparison with Eq.
�8� teaches us that Eq. �11� is precisely the mean field equa-
tion for ��=0 and for a degree distribution with an exponent
that is modified to

�� =
� − �

1 − �
. �12�

This relation can be expected to hold more generally. Indeed,
it should be valid whenever within a mean field approach the
degree k only enters in physical properties through the
quenched average interaction between any two nodes with
fixed degrees ki and kj. This average is, as shown above,
Jijpij with pij =kikj / �QN�. For ��0, the ki can then be trans-
formed using Eq. �10�. In order to retain the same physics,
averages over the degree distribution must be invariant. This
requires a distribution transformation

P�k� = P��k��k��
dk��k�

dk
�13�

from which Eq. �12� follows for a scale-free P�k�. In Sec. VI,
we will in fact show that Eq. �12� also holds for a contact
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process with degree-dependent infection rates. The general
derivation scheme outlined above will also apply there. Thus
our simple mean field analysis indicates that by tuning �
� �2−� ,1� we can encounter the whole range of universality
classes that was found in earlier work at �=0. As an ex-
ample, one can study the whole set of universality classes by
working on a BA network and tuning �. For the particular
example of the SAN, Eq. �12� gives ��=5.

In the rest of this paper we will apply several other ap-
proaches that go beyond simple mean field to our model.
These will allow us to get a better estimate than Eq. �9� for
the critical temperature, and to verify the equivalence be-
tween universality classes as expressed in Eq. �12�.

We also observe that from Eqs. �5� and �6� it follows that

mi = tanh
 JQ�

kBT
ki

1−�S� �
JQ�

kBT
ki

1−�S , �14�

where the last approximation holds close to Tc. We therefore
anticipate that the local magnetization is proportional to ki

1−�,
a result that we will use further in this paper and which will
be verified numerically.

III. CAVITY METHOD

We begin with a study of our model using the cavity
approach. One reason for this is that concepts like the cavity
field and the propagated field, which also appear in the rep-
lica study of our model, can be introduced in a physically
transparent way within the context of this method.

The cavity method is closely related to the well known
Bethe-Peierls �BP� approximation for a spin model on a
Cayley tree �20�. In fact, both methods are equivalent when
there is replica symmetry �for the precise relation between
various mean-field approximations, see Ref. �20��. The cav-
ity method was applied to diluted spin models in Refs.
�21–23�. For Ising-like models on a network, the method has
the advantage that it can take into account site degree corre-
lations, which certainly are present in networks grown via a
preferential attachment rule �24,25� or in real world networks
�from biology, sociology, information technology, etc.�.
These correlations can be measured in terms of the clustering
coefficient, the betweenness �1�, or the abundance of cycles
of a given length �26,27�. This has to be contrasted with the
replica approach of the next section, which, in its simplest
form, assumes independence of the site degrees. Extensions
of the replica approach that take into account degree corre-
lations are known �25�, but necessarily are more involved.
Another attractive property of the cavity method is that ther-
modynamic quantities like the magnetization can be calcu-
lated on a single network realization. Together these proper-
ties allow the analysis of real world networks and to work
with ensembles that, as in the BA case, are defined only
through a growth process.

To derive the cavity equations, it is assumed that the net-
work has the structure of a tree. It is at first sight paradoxical
that the tree approximation is adequate for determining the
critical point of the network, because the Ising model on a
tree �without loops� cannot display spontaneous symmetry

breaking �SSB� at finite temperature and thus Tc=0. How-
ever, in the same way that the Bethe-Peierls approximation
for an Ising model on a Cayley tree introduces an effective
symmetry breaking field in the bulk so that SSB becomes
possible, the cavity method introduces a random distribution
of effective fields in the bulk �all fields being of the same
sign� so that SSB becomes possible notwithstanding the ab-
sence of loops on the tree. Thus the SSB due to the sparse
loops in the actual network is replaced, in the cavity method,
by the SSB due to the effective fields. The question remains
whether the two SSB mechanisms lead to exactly the same
value of Tc.

Consider then a particular site j in the network �see Fig.
1�. The assumption of tree structure implies that the sites
connected to j form the roots of a set of independent sub-
graphs.

The site j is connected to kj others. In the presence of an
external field H the magnetization at site j is given by �with

=1/kBT�

mj =

e
H�
i=1

kj

Zij�+ � − e−
H�
i=1

kj

Zij�− �

e
H�
i=1

kj

Zij�+ � + e−
H�
i=1

kj

Zij�− �

. �15�

Here Zij�s� is the partition sum of the whole subgraph start-
ing from site i and s is the value of the spin at j. This
partition sum also includes the bond between the vertices i
and j. Clearly, we can always write

Zij�s� � e
uijs, �16�

where we call uij the local cavity message. With this assump-
tion, Eq. �15� becomes

mj = tanh

H + 
�
i=1

kj

uij� �17�

which also gives a clear physical interpretation to uij. Indeed,
uij can be seen as the contribution to the total magnetic field

FIG. 1. Local structure of a network used in the derivation of the
cavity equations �see text�.
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acting on site j coming from the independent subtree having
site i as root. In the cavity ansatz, those local contributions
are indeed independent. We need extra equations to deter-
mine the cavity fields self-consistently. In order to determine
these, we write Zij�s� in terms of the subtrees that are con-
nected to it �see Fig. 1�. We denote the sites adjacent to i by
the index l. Their number equals ki, but clearly, one of them
is the starting site j. From the definition of Zij�s�, we have

Zij�s� = e
H+
Jijs�
l=1

ki−1

Zli�+ � + e−
H−
Jijs�
l=1

ki−1

Zli�− � �18�

so that using Eqs. �15� and �16�, we obtain after a little al-
gebra

uij =
1



tanh−1�tanh�
hij�tanh�
Jij�� , �19�

where

hij = H + �
l=1

ki−1

uli �20�

is called the propagated field �sometimes also called cavity
field�. Equations �19� and �20� are known as belief propaga-
tion equations �20�. They were derived iteratively here, but it
is possible to obtain the same equations through a variational
procedure and assuming that configuration probabilities
properly factorize on a tree. A short derivation from the
variational approach will be presented in Sec. IV A.

We solved the belief propagation equations iteratively for
different values of � in our model. One can show in this case
that belief propagation equations, when converging, do so to
a unique fixed point �beside the fully paramagnetic solution
which is always present in the absence of external field�.
When possible, we could also be interested in averaging be-
lief propagation equations over a proper random network
ensemble. In that case, equations for propagated messages
and fields become a set of integral equations for field prob-
ability distributions �22,23�. This unfortunately cannot be
easily done in the case of growing network ensembles, like
the BA one. In the case of uncorrelated power-law degree
distributed graphs, the self-consistent integral equations can
be written straightforwardly from Eqs. �19� and �20�. The
resulting equations turn out to be exactly Eqs. �48� and �49�
that we will obtain through the replica approach. On the
same random network ensemble, the replica symmetric cal-
culation and the cavity method are therefore completely
equivalent. Note, however, that the analytical results for Tc
presented in the replica calculation are valid for a graph en-
semble which is not exactly the BA one. It is therefore plau-
sible that we obtain a slight discrepancy between the replica
and the cavity results obtained after averaging over real BA
network realizations.

Within the cavity approach, it is also possible to obtain
the free energy F�
� and from this other thermodynamic
quantities such as the energy U�
� and the specific heat
C�
�. Here we only quote the result for U,

U�
� = − �
i,j

Jij
 tanh�
Jij� + tanh�
hij�tanh�
hji�
1 + tanh�
Jij�tanh�
hij�tanh�
hji�

� .

�21�

We now turn to a discussion of our numerical results.
These were obtained on BA networks. Ensemble averages in
the case of BA networks can be performed numerically gen-
erating a large number of graphs with a given number of
nodes with the usual preferential attachment rule, and subse-
quently averaging the results over all the graphs at a given N.
Quantities such as Tc and the critical exponents can then be
found using finite size scaling. We studied 1000 realizations
of networks of N=50, 100, 250, 500, 1000, 5000, and 104

nodes, 100 realizations with N=5�104 nodes and 10 real-
izations of 105 and 106 nodes. For each of these the cavity
messages were determined iteratively. The numerical results
showed little fluctuations when comparing different realiza-
tions, even for small network sizes.

We first investigated the SAN and studied cases with Q
=4, 6, 8, 10, and 20. In Table I �see Sec. IV� we give our
estimates for Tc as a function of Q. These results will be
compared with those coming from other methods.

From the behavior of the magnetization M �M = 1
N�imi�

below Tc �Fig. 2�, we can determine the exponent 
. We find
a value which is very close to the mean field value of 1 /2.
This value hardly depends on N or on Q. These data also
allow us to obtain finite size estimates Tc�N� for the critical
temperature. We measured the magnetization within a small
temperature window around each value of Tc�N� and this for
small values of the external field H. From an extrapolation
for large N, the value of the exponent � was found to be
close to 3. More precisely we find 1/�=0.333±0.010 for
Q=4. For bigger Q values, we find the same value for 1 /�
while the error decreases with Q. Using the scaling relation
�s=
��−1�, this leads to the value 1 for the susceptibility
exponent �s.

Specific heat computations �see Fig. 3� show a jump
around the transition. However, the discontinuity seems to
become smaller for large N such that

lim
T→Tc

−

dC

dT
= − � . �22�

Both cases �vanishing jump with diverging derivative or dis-
continuity in C� can be consistent with a critical exponent
=0.

The conjecture embodied in Eq. �12� predicts that the
SAN on a BA network has ��=5. The critical exponents are
then given by �s=1, 
=1/2, and =0 �13–15�. In conclu-
sion, we can say that the results from the cavity method for
the SAN are in agreement with the relation �12�.

A peculiar behavior of the specific heat can be seen in Fig.
3. For both Q values shown there, one observes a maximum
in the specific heat at a temperature below the critical one.
This seems not to be a finite size effect. Moreover, as Fig. 4
shows, this kind of behavior does not appear for the SAN on
a network with a Poisson degree distribution.

Another interesting feature is that close to Tc we observe
an inversion phenomenon in the local magnetization of sites.
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Below the transition, there is a clear hierarchy in sites ac-
cording to their spin magnetization. Even though couplings
are weighted, hubs are still the most magnetized sites and are
believed to drive the transition. Plots of the local magnetiza-
tion vs site degree for a few values of the temperature above

and below Tc are shown in Fig. 5. These data are consistent
with the prediction �14� coming from the simple mean field
theory.

As can be seen in the scatter plots of Fig. 6, low degree
nodes connected to hubs have a lower magnetization than
equal degree nodes that are not connected to hubs. Above the
transition, however, this situation is reversed. This is differ-

TABLE I. Critical temperature kBTc /J as a function of Q for the SAN on networks, as obtained from
various approaches. On a regular lattice with coordination number Q, the Bethe-Peierls �BP� approximation
gives J /kBTc=ln(Q / �Q−2�) /2. This value is given in the second column. In the third column the results of
the cavity approach are given, while the fourth column presents the estimate obtained within the Bethe-
Peierls approximation on the network, Eq. �32�. The fifth column gives the solution to Eq. �56� obtained in
the replica approach. The last column gives the estimates coming from the Monte Carlo simulations. The
results for the cavity method and the simulations were obtained on BA networks. The results for the network
BP and the replica method were obtained on uncorrelated networks. This has dramatic consequences for Q
=2. For Q=2, Tc=0 on BA networks because BA networks with Q=2 are simple trees without loops. In
contrast, uncorrelated networks with Q=2 may feature loops as well as disconnected parts.

Q lattice BP Cavity Network BP Replica Monte Carlo

2 0 0 0.95230 0.94614 0

4 2.8854 2.87±0.01 2.95508 2.92468 2.91±0.02

6 4.9326 4.92±0.01 4.9554 4.94511

8 6.9521 6.94±0.01 6.9406 6.95796

10 8.9628 8.94±0.01 8.9087 8.96607 8.96±0.01

20 18.9824 18.98±0.01 18.9107 18.98187 19.09±0.04

FIG. 2. Magnetization vs temperature for Q=4 �a� and Q=10
�b� for N=102, 103, 104, 105. For Q=4, results for N=106 are also
included.

FIG. 3. Specific heat vs temperature for Q=4 �a� and Q=10 �b�
for N=102, 103, 104, 105. For Q=4, results for N=106 are also
included.
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ent from the situation for an Ising model with degree-
independent couplings on a network, where at fixed degree,
nodes connected to hubs are always most magnetized.

Besides the SAN, we also investigated our model with the
same techniques for �=1/3 on a BA network. For that case,
Eq. �12� predicts ��=4 which leads to the exponent values
�s=
=−=1 and �=2. In Fig. 7 we show some representa-
tive results for the specific heat and the magnetization as a
function of temperature �both at Q=4�. They show the ap-
pearance with increasing N of a regime where both quantities

depend linearly on temperature, consistent with the above
prediction.

IV. CRITICAL TEMPERATURE

In this section we discuss two approaches, the Bethe-
Peierls approximation and the replica method, that allow us
to get precise results for the critical temperature. Both ap-
proaches assume that there are no degree correlations present
in the network.

A. Bethe-Peierls approximation

The Bethe-Peierls �BP� approximation is the simplest of
the cluster variation methods �29�. It amounts to approximat-
ing the entropic part of the free energy, F�
�, by restricting
the probability distribution � of a configuration of N spins to
a combination of single-site and nearest-neighbor pair distri-
butions. For a particular fixed network, this leads to the fol-
lowing expression for F�
�:

FIG. 4. Specific heat vs temperature for a graph with a degree
distribution that is Poisson �Q�4�. The plots refer to an average
over 500 realizations for N=103, 104, and 50 realizations for N
=105.

FIG. 5. Scatter plot of single node magnetizations vs degree for
one network of N=10 000 and Q=4 at different temperatures: �a�
below Tc�kBTc /J=2.87±0.01�, �b� above Tc.

FIG. 6. Scatter plot of magnetizations of all nodes of degree k
=2 for the same network as in Fig. 5, vs node index �i.e., the time
step at which this node is added when the network grows according
to the BA rule�. Diamonds represent those nodes connected to hubs
whereas crosses represent nodes of degree 2 not connected to hubs.
Older nodes �smaller index� are on average more connected to hubs
than later ones. Different clusters represent different temperatures.
In �a� we show the results for two temperatures below Tc while in
�b� the temperatures are above the critical one. The inversion phe-
nomenon described in the text can clearly be seen.
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F�
�
 � 
�H� + �
i

�1 − ki� �
si=±1

�i ln �i

+
1

2�
i

�
j=1

ki

�
si,sj=±1

�ij ln �ij , �23�

where

H = −
1

2�
i

�
j=1

ki

Jijsisj , �24�

�i =
1 + misi

2
, �25�

�ij =
1 + misi + mjsj + �ijsisj

4
. �26�

Here �ij = �sisj�. Expressions for the local magnetizations mi

and the neighbor spin-spin correlations �ij are obtained by
looking for extrema of the free energy,

�F

�mi
= 0 " i , �27�

�F

��ij
= 0 " i, j . �28�

It can be shown that Eqs. �27� and �28� are fully equivalent
to Eqs. �19� and �20� �20�.

Next, the resulting self-consistency equations are linear-
ized in the mi. In this way one obtains for the spin-spin
correlations

�ij = tanh�Jij/kBT� . �29�

After summing over all the vertices, the equation for the
magnetization becomes

1

N
�

r

�kr − 1�mr =
1

N
�

r

mr�
j=1

kr 1

1 + �rj
. �30�

Since we now want to get a simpler analytic expression for
the critical temperature, we do not solve Eq. �30� on single
graphs, as already done in a more complete setting with the
cavity approach. Instead, we average it over the network re-
alizations. This we do in two steps. First, using a similar
approximation as in Sec. II, we replace the second sum on
the right hand side by a sum over all nodes. Hence we obtain

1

N
�

r

�kr − 1�mr =
1

N
�

r

mr�
j=1

N

prj
 1

1 + �rj
� , �31�

where again prj =krkj / �QN�. Second, we insert the propor-
tionality between mj and kj

1−� implied by Eq. �14�: mj

�kj
1−�. In the limit N→� the resulting equation can again be

written in terms of the average over the degree distribution.
We then finally obtain

Q�
k=m

�

P�k��k − 1�k1−� = �
k1=m

�

P�k1�k1
2−�

� �
k2=m

�

P�k2�
k2

1 + tanh�JQ2�/kBTk1
�k2

��
.

�32�

For the case �=0, and for Q large, Eq. �32� can be approxi-
mated and gives the estimate kBTc /J��Q2−Q� /Q, in agree-
ment with exact results �13�. Also, for the SAN on a BA
network, we get for Q large kBTc /J�Q−1. On a regular
lattice with coordination number Q, the Bethe-Peierls ap-
proximation gives J / �kBTc�=ln� Q

Q−2
� /2 �28�. As can be seen

in Table I, this approximation gives a very good value for Tc
for Q�4.

Equation �32� can be solved numerically. In Table I we
present our results for the SAN on a BA network with
P�k�=2m�m+1� /k�k+1��k+2� �for this case, m=Q /2�.

B. Replica theory for an uncorrelated network

The replica approach is a powerful mathematical tech-
nique that provides a way to perform an average over ran-
dom network ensembles. For the present model, and in ab-
sence of degree correlations, it leads to a relatively simple
analytical equation from which the critical temperature can
be determined numerically.

FIG. 7. The specific heat �a� and the magnetization �b� as a
function of temperature for a BA network with �=1/3. The average
connectivity is Q=4.
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In order to define the random ensemble of networks we
start by defining the adjacency matrix C of a graph. This
matrix is the N�N matrix whose element cij is one if there is
a link between node i and j and zero otherwise. Clearly,

�
j=1

N

cij = ki. �33�

Moreover, for undirected graphs C is symmetric, cij =cji. Us-
ing the adjacency matrix we can write the Hamiltonian H for
our model as

H = −
1

2�
i�j

N

J��ki,kj�cijsisj − H�
i=1

N

si, �34�

where in our case ��ki ,kj�=Jij /J=Q2� / �kikj��. The replica
approach can, however, be performed for more general forms
of �. In Eq. �34�, we have also included an external mag-
netic field H for later convenience.

We calculate the typical properties of all networks with a
given fixed set of degrees �ki�. The matrix elements cij are
assumed to be completely uncorrelated apart from the con-
straint �33�. Therefore given that

P�cij� =
Q

N
�cij,1

+ 
1 −
Q

N
��cij,0

�35�

we can write their joint probability distribution as

P��cij�� � �
i�j

P�cij��
i

�
�
j

cij − ki� . �36�

As usual in disordered systems, we compute the quenched
average of the free energy density per site, fq�
�, from which
typical properties can be determined,

− 
fq�
� = lim
N→�

1

N
�ln Z� , �37�

where 
=1/ �kBT�. Since the calculation is rather involved
but standard �14,21,30�, we summarize here only the major
steps and results. Using the equality ln Z=limn→0

1
n �Zn−1�

the quenched free energy density is written as

− 
fq�
� = lim
N→�

lim
n→0

1

Nn
��Zn�
�� − 1� . �38�

The replicated partition function Zn�
� equals

Zn�
� = �
s�1

¯ �
s�N

exp�


2 �
=1

n

�
i,j

Jijsi
sj

 + 
H�
=1

n

�
i=1

N

si
� ,

�39�

where s�i= �si
1 , . . . ,si

n�. For the distribution of connectivities
given in Eq. �36�, the average �·� is

�A��cij��� =
1

N � ��
i�j

dcijP�cij���
i=1

N

�
�
j

cij − ki�A��cij�� ,

�40�

where N is the normalization

N =� ��
i�j

dcijP�cij���
i=1

N

�
�
j

cij − ki� . �41�

In order to calculate this average, it is common to introduce
an exponential representation of the constraint

�
�
j=1

N

cij − ki� = �
0

2� d�i

2�
ei�i��j=1

N cij−ki�. �42�

A straightforward but lengthy calculation in which we inte-
grate over the disorder and the auxiliary variables �i allows
us to obtain the free energy density in terms of the functional
order parameter

Rk�s�� =
1

N
�
i=1

N

�s�,s�i
�k,ki

ei�i �43�

and its canonical conjugate R̂k. This order parameter is an
order parameter in the replica space which is the joint density
of finding a spin configuration s� with average connectivity k
at each site, when a link has been removed from that site.
The result is

− 
fq�
� = Extr�R̂k�s��,Rk�s����− Q�
s�,k

R̂k�s��Rk�s�� +
Q

2

+ �
k

P�k�ln �
s�

�R̂k�s���ke
H�=1
n s

+
Q

2 �
k,k�

�
s�,��

Rk�s��Rk���� �e
J��k,k��s�·��� , �44�

where we also performed the rescaling iR̂k�s��→−QR̂k�s��.
Stationarity of the free energy with respect to Rk�s�� and

R̂k�s�� leads to the saddle-point equations

R̂k�s�� = �
k�,��

Rk���� �e
J��k,k��s�·�� ,

Rk�s�� =
kP�k�

Q

�R̂k�s���k−1e
H�=1
n s

�
��

�R̂k��� ��ke
H�=1
n �

. �45�

If all the ��k ,k�� are positive, so that the model only has
ferromagnetic interactions, it can be expected that the solu-
tion to these equations has replica symmetry �RS�. For the
order parameter and its conjugate, this assumption takes the
form

Rk�s�� =� dhWk�h�
e
h�=1

n s

�2 cosh�
h��n �46�

and

R̂k�s�� =� duQk�u�
e
u�=1

n s

�2 cosh�
u��n , �47�
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respectively. Here h and u are the local cavity message and
the propagated field that we already encountered in Sec. II.
While the cavity approach calculates these fields for a spe-
cific network, in the replica approach we can obtain their

probability distributions over the set of all networks obeying
the constraints �33�. These distributions are denoted as Wk�h�
and Qk�u�, respectively. Within the RS ansatz, the saddle-
point equations become

Qk�u� = �
k�
� dhWk��h��
u −

1



tanh−1�tanh�
h�tanh�
J��k,k����� , �48�

Wk�h� =
P�k�k

Q
� ��

l=1

k−1

dulQk�ul���
h − �
l=1

k−1

ul − H� �49�

and the free energy density equals


fq�
� = − Q ln 2 + Q�
k
� dudhQk�u�Wk�h�ln�1 + tanh�
u�tanh�
h��

− �
k

P�k� � ��
l=1

k

dulQk�ul��ln�2 cosh�

�
l=1

k

ul + H��
�
l=1

k

2 cosh�
ul� � −
Q

2 �
k,k�

� dhdh�Wk�h�Wk��h��Fkk��
,h,h�� , �50�

where

Fkk��
,h,h�� = ln�cosh�
J��k,k���

+ sinh�
J��k,k���tanh�
h�tanh�
h��� .

The average zero-field magnetization per site, M, then fol-
lows immediately,

M = −
�fq

�H
�H = 0�

= �
k

P�k� � ��
l=1

k

dulQk�ul��tanh

�
l=1

k

ul� . �51�

From Eqs. �48� and �49� we can obtain an equation that
contains only the functions Qk�u�,

Qk�u� = �
q

P�q�q
Q

� ��
l=1

q−1

dulQq�ul����u − Gkq�
�� ,

�52�

where

Gkq�
� =
1



tanh−1�tanh

�

l=1

q−1

ul�tanh�
J��k,q��� .

�53�

One can try to solve this set of equations, for example,
using population dynamics techniques. Here we only inves-
tigate the simpler question of locating the critical tempera-

ture. For this, we assume that the cavity fields u are very
small near the transition. The argument of the delta function
in Eq. �52� can then be linearized using

Gkq�
� � tanh�
J��k,q���
l=1

q−1

ul.

We next multiply both sides in Eq. �52� by u and we inte-
grate. This gives

� duQk�u�u = �
q

P�q�q
Q

tanh�
J��k,q���
l=1

q−1 � dulQq�ul�ul.

�54�

Finally, we denote xk=�Qk�u�udu and define a matrix A�
�
with elements

Aq,k�
� =
P�q�q�q − 1�

Q
tanh�
J��k,q��, q,k 	 m

�55�

�m is the smallest degree appearing in the network�. Finding
the critical temperature now amounts to locating the value of

 for which the matrix A has an eigenvalue 1, i.e., to solving

det�A�
c� − I� = 0. �56�

In principle, the matrix A is infinite dimensional. For a
given P�k�, m, and ��k ,k�� one can, however, calculate an
estimate Tc�K� for the critical temperature by truncating the
matrix and limiting q and k to be smaller than a given K. An
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extrapolation for K→� then gives Tc. We have performed
such a calculation for the SAN for different values of Q.
Some numerical values can be found in Table I.

V. MONTE CARLO SIMULATION RESULTS

Finally, we also investigated our model numerically on a
BA network. This allows us to investigate effects that are
neglected within the cavity approach, such as the appearance
of loops in the network.

First we investigated the SAN with various values of Q.
When a BA network is grown by the addition of m new links,
one always ends up with an even value of Q, since Q=2m. In
order to obtain an odd average connectivity, alternating val-
ues of m were used. For example, by alternating m between
1 and 2 we obtain Q=3. We used the standard Metropolis
algorithm to simulate our model. Typically, we averaged
over 400 uncorrelated spin configurations at each tempera-
ture and for each realization of the network.

The simulations were made for networks with N ranging
between 100 and 56 000. At low values of Q we found large
fluctuations in the properties of different realizations. We
typically investigated between 200 and 5000 realizations of
the network, depending on the size of the network and the
quantity under investigation.

The value of Tc was obtained from the intersection of the
Binder cumulants UN=1− �M4� / �3�M2�2�, with M the total
magnetization in a given configuration. In order to obtain a
value for the intersection point, we first fitted a curve through
the data points �generally a fifth degree polynomial� and then
solved for the intersections of the fitted curves. From this, we
obtain the finite size “critical temperature” Tc�N�. These
were then extrapolated using the standard relation

Tc�N� � Tc��� − bN−�1/�2−���1+���, �57�

where � is a correction-to-scaling exponent, introduced by
Binder �31–33�, and � is the “correlation length” exponent

proper to lattice models. In our network models the product
�� figures as a single number, since a correlation length is
not defined. In Fig. 8, a typical example of such a fit is
shown. The resulting estimate of Tc, together with those ob-
tained for other Q values, is given in Table I. Moreover, from
the data in Fig. 8, the estimate �1+��� / �2−�=0.58±0.12 is
obtained. The network with Q=3 was only investigated with
the simulation method and for this case we find kBTc /J
=1.85±0.03.

From the Binder cumulant, we can estimate the exponent
. Indeed, the derivative of the cumulant U�N=dUN /dT at
Tc�N� scales as

UN� �Tc�

UN�
� �Tc�

= 
 N

N�
�1/�2−�

. �58�

The derivative can be obtained from the polynomial fit used
to determine Tc�N�. The values that we obtain are consistent
with the assumption that =0.

Next, we calculated the magnetization at Tc�N� as a func-
tion of N. This allows us to estimate the exponent 
 / �2
−� as �0.25. In Fig. 9�a� we show our numerical results for
Q=10. This result is consistent with the mean field values

=1/2 and =0. As a further test, we plotted the squared
magnetization as a function of T. Below Tc, we expect this to

FIG. 8. Finite size estimate of the critical temperature �divided
by the mean field estimate JQ /kB� as a function of 1/N obtained
using the intersections of the cumulants. An example of such an
intersection is given in the second plot. The average connectivity is
Q=4.

FIG. 9. �a� N dependence of the magnetization of the SAN at
Tc�N� �Q=10�. The slope is −0.25±0.01. �b� The magnetization
squared as a function of temperature for a network of 3200 nodes,
averaged over 400 samples.
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be a linear function and from a fit to this form we can get a
second estimate of Tc �see Fig. 9�b��. The values that we find
in this way are in agreement with those coming from the
cumulants, although the precision is less good.

We also computed the finite-lattice susceptibility ��, in-
troduced by Binder �34�,

�� � �M2� − ��M��2. �59�

By taking the modulus of the magnetization, one tries to
minimize finite size effects. Besides giving information
about Tc, which is in agreement with the results coming from
the cumulants and the magnetization, the susceptibility pro-
vides information on the critical exponent �s. At Tc, one
expects ���N�s/�2−�. We calculated �� as a function of N at
a temperature close to Tc. We find that �s / �2−� is close to
0.47±0.03, which is consistent with �s=1 using the earlier
estimate of .

The plots for the specific heat as a function of temperature
Fig. 10�a� look similar to those obtained from the cavity
method. The specific heat does not diverge with size but
saturates, which implies �0. However, the plots do not
show the usual, mean field jump at Tc, but are in agreement
with the presence of logarithmic corrections. The maximum
in the specific heat below Tc that was found within the cavity

approach �Fig. 3� is also clearly visible in the data. When we
change the value of � from 1/2 to 1 we do find results
consistent with the usual mean field behavior, i.e., with a
jump at Tc �see Fig. 10�b�, and compare with Fig. 4�. Indeed
�=1 corresponds to ��→�, which corresponds to a network
with a narrow degree distribution.

We also performed a completely similar investigation of
the network with �=1/3 and Q=10. In Fig. 11, we show
log-log plots of the magnetization �a� and the susceptibility
�b� as a function of N at the numerically determined value of
Tc. From these data we obtain 
 / �2−�=0.358±0.001 and
�s / �2−�=0.282±0.002. These results are consistent with
the predictions coming from Eq. �12�: 
 / �2−�=1/3 and
�s / �2−�=1/3. The remaining discrepancy is probably due
to errors in the determination of Tc. We also obtained data for
the specific heat, but they do not allow a precise determina-
tion of . From Eq. �12�, the prediction =−1 follows. This
implies that the specific heat decreases linearly to its high-
temperature background value. The data shown in Fig. 12 are
consistent with this expectation.

From the simple mean field theory of Sec. II, it follows
that the local order parameter mi�ki

1−�. We also used this
relation in our derivation of the BP approximation. In order
to get further confirmation for this type of scaling, we
checked it numerically. Our results are shown in Fig. 13, for
the cases �=0, 0.5, and 1 on a BA network. For high values
of the degree, the statistics is not very good, but for smaller

FIG. 10. The specific heat as a function of temperature for a
network of 5600 nodes �SAN model, top� and for the modified
model with �=1 �bottom�. Averages were taken over 400 samples.
The average connectivity is Q=10.

FIG. 11. Log-log plot of the magnetization �a� and the suscep-
tibility �b� vs N at Tc for the case �=1/3, Q=10.
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ki values the scaling �14� seems to be well satisfied.
We finally remark that for the SAN with Q=2, the Monte

Carlo simulations indicate a zero critical temperature. In-
deed, for this value of Q, the BA network has the structure of
a tree and therefore it cannot support order. This is in con-
trast with the results coming from the replica approach.
However, in that approach loops are not excluded and the
network can be a collection of disconnected clusters, the
largest of which determines the nonzero Tc in the large-N
limit. To test this, we generated a set of random �uncorre-
lated� networks with Q=2 and �=3 by ascribing to each
vertex a degree taken from the distribution P�k�. The links
going out of the vertices are then randomly paired to create a
network. The resulting network is indeed found to consist of
disconnected parts. In Fig. 14 we show Monte Carlo results
for the Binder cumulant as a function of temperature for two
networks �N=2000 and N=4000� generated in this way. We
took �=1/2. Clearly there is an intersection from which we
obtain the finite size estimate for the critical temperature.
After extrapolation �N→�� we obtain from these kind of
data kBTc /J=0.926 48. For comparison, the BP prediction for
kTc /J is 0.952 and the replica method gives 0.946 �Table I�.

VI. NONEQUILIBRIUM MODELS

In this section, we show that the basic result of this paper,
Eq. �12�, is also true for a nonequilibrium model. In particu-
lar, we will investigate the contact process �35� on a network.
This process is a well known model originally introduced to
describe the spreading of a disease in a population. Later, it
was found to be related to directed percolation �36� and be-
came the prototype model used in the study of absorbing
state phase transitions �37�. Recently the contact process has
also been applied in metapopulation ecology �38�, but in this
paper we will use the epidemiological language.

On a network we define the contact process as follows.
Each vertex i can be in two states that we denote as ill �ni

=1� and healthy �ni=0�. The dynamics of the model is given
by a continuous time Markov process �39�. An ill site can
cure with a rate 1 �this fixes the time scale�. A healthy site

becomes ill with a rate that equals � times the number of ill
neighbors, where on a network two vertices are called
“neighbors” if they are linked.

This model has an absorbing state: if all sites are healthy,
they will stay healthy forever. For an infinite system, there is
a phase transition at some �c. If ���c, the system will
evolve to the absorbing state. For ���c, there will always
be a finite density of “ill” sites. This density is the order

FIG. 12. The specific heat as a function of temperature for a
network of 1000 nodes ��=1/3�. The average connectivity is Q
=10. Notice the linear regime for 8�kBT /J�10.2.

FIG. 13. The magnetization of individual spins as a function of
degree for a network of 1000 nodes and different values of �. The
averages are made over 1000 networks. The values of � and the
predicted k dependence, respectively, is �=0, linear; �=0.5, square
root; �=1, constant. The temperature is slightly below the respec-
tive critical temperatures.
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parameter of the model and it goes to zero if one approaches
�c from above. Vespignani and co-workers �40,41� showed
that on a scale-free network for 2���3, �c=0 and the ex-
ponents are � dependent. For 3���4, �c�0 and the criti-
cal exponents are again � dependent. Finally, for ��4, �c
�0 and critical exponents assume the mean field values for
the contact process on a regular lattice. This scenario is remi-
niscent of that for the opinion formation model.

We next generalize the contact process by taking the in-
fection rate as

�ij = �Q2��kikj�−�. �60�

Using standard techniques from the theory of stochastic pro-
cesses �39�, one can show that �i= �ni� �where �·� in this
paragraph denotes the average over histories of the stochastic
process� obeys the exact equation

d�i

dt
= − �i + �

l

�il��1 − ni�nl� . �61�

The sum runs over the neighbors of i. We now make two
approximations similar to those performed in Sec. II. The
first one, the dynamical mean field approximation, puts ��1
−ni�nl����1−ni���nl�= �1−�i��l. Next, again following
Bianconi �19�, we replace the sum over the neighbors by a
sum over all the nodes, and take for �ij its average over all
realizations of the network with a given set of degrees. Then
Eq. �61� becomes

d�i

dt
= − �i + �1 − �i��

j=1

N

��ij�� j . �62�

Now �see Sec. II� ��ij�=�ijpij with pij =kikj / �QN�, the prob-
ability that nodes i and j are connected. This gives

d�i

dt
= − �i + �1 − �i�

�Q2�−1

N
ki

1−��
j=1

N

kj
1−�� j . �63�

We introduce �,

� =
Q�−1

N
�
j=1

N

kj
1−�� j . �64�

From here on, we will assume that �i depends only on the
degree of i. We can then write for a large network

� = Q�−1�
k

P�k�k1−��̃k, �65�

where �̃k is the density of sites that are ill and have degree k.
Using Eq. �64� and this assumption, Eq. �63� becomes

d�̃k

dt
= − �̃k + ��1 − �̃k�Quk1−�� . �66�

We are interested in the static properties, i.e., the proper-
ties of the model in the long time limit. Then, from Eq. �66�
we get

�̃k =
�Q�k1−��

1 + �Q�k1−��
. �67�

Using Eq. �65�, we find a self-consistency equation for �,

� = �Q2�−1�
k

P�k�
k2−2��

1 + �Q�k1−��
. �68�

We can now in principle analyze this equation.
But as was the case for the opinion formation model, it is

easier to transform away the � dependence. This is most
easily done by rewriting Eq. �68� as an integral,

� = A�Q2�−1�
m

�

k−� k2−2��

1 + �Q�k1−��
dk , �69�

where A is a normalization constant and where the power-
law form for P�k� is inserted. If we change variables to k�
=Q�k1−�, Eq. �10� becomes �if ��1�

� = A��
m�

�

�k���1−��/�1−�� k��

1 + �k��
dk�, �70�

where A� is another constant and m�=m1−�Q�.
This is precisely the form �69� assumes for ��=0 pro-

vided we shift � to �� given by

�� =
� − �

1 − �
. �71�

Thus the same relation holds as for the static Ising case �42�.
But notice that now, taking �=1/2 and a Barabasi-Albert
network �i.e., the epidemiological version of the SAN�, lead-
ing to ��=5, we are in a situation where mean field theory
should hold without logarithmic corrections.

The relation �12� thus appears to be quite general
and one may wonder whether there are any exceptions to it.
We first discuss a recently proposed realization of the
Bak-Tang-Wiesenfeld sandpile model on scale-free networks

FIG. 14. Binder cumulants as a function of temperature for a
network with �=3, Q=2, and �=1/2. The figure shows a clear
intersection of the cumulants for N=2000 �circles� and N=4000
�squares� indicating the presence of a critical point at finite tempera-
ture. The averages were done over 6000 and 5000 realizations of
the networks, respectively. The fit with a third degree polynomial is
also shown in the figure.
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�43�. In this model an avalanche can be generated through
the following dynamical rules: �i� at each time step, a grain is
added at a randomly chosen network node i; �ii� if the height
hi at node i exceeds a given threshold zi, it becomes unstable
and an integer number of grains, n�zi�, at the node topple,
with n�zi�−1�zi�n�zi�, to randomly chosen n�zi� nodes
among ki adjacent ones; �iii� whenever adjacent nodes be-
come unstable toppling takes place also there, on all unstable
nodes in parallel, and the avalanche continues until there are
no unstable nodes left. In the proposed version of the model
�43�, a parameter � is introduced and the threshold zi of node
i is taken to be

zi = ki
1−�. �72�

Note that for �=0 the model features a simple degree-
dependent threshold, and in the extended model k is replaced
by k1−�. Note that this is reminiscent of the transformation
k→k1−� which we discussed in other contexts in this paper.

A key quantity in the description of the avalanche dynam-
ics by mapping each avalanche to a tree is the branching
probability Pb�n� that a node, which receives a grain from a
neighbor, generates n branches. This probability consists of
two factors �43�. If branching occurs for a given node i, n�zi�
branches are generated. Therefore the first factor P1�n� is the
probability that n coincides with n�zi� for a node i already
connected to the tree. The second factor is the probability
that the height hi takes the value n−1 at the moment that
node i receives a grain from a neighbor. This probability
P2�n� is not important for us here, but in the case of inde-
pendent random heights 0, 1,¼, n−1 in the inactive state of
the sandpile, it equals 1 /n. If we would adopt a continuum
approximation, treating n as a real number, and approximate
n�zi� by zi, we would arrive at the result

Pb�n� = �n1/�1−��P�n1/�1−���/Q�P2�n� , �73�

where the first factor, P1�n�=kP�k� /Q, is the probability that
the first neighbor of a node has degree k, with in our case
k=n1/�1−��. This probability differs from P�k� in that it pre-
supposes that the generating node is already connected to the
tree.

If we compare this Pb�n� with its counterpart for the
model with �=0, we easily observe that the extended model
is equivalent to the basic model with ��=0, provided the
topological exponent is transformed according to

�� =
� − �

1 − �
. �74�

This is in agreement with our general exponent relation, but,
as we shall show now, and as Goh et al. already found �43�,
this result is incorrect.

The correct exponent relation is found when taking into
account properly that n is always an integer, and that all
thresholds in the interval n−1�zi�n contribute to the prob-
ability of generating n branches. P1�n� thus consists of a
sum, or, for simplicity and without loss of relevant precision,
an integral, so that

Pb�n� = 
�
�n − 1�1/�1−��

n1/�1−��

kP�k�dk/Q�P2�n� , �75�

from which follows the correct relation

�� =
� − 2�

1 − �
, �76�

which was already obtained by Goh et al. �43�. We conclude
that an exception to our general exponent relation arises here
due to the discrete �integer� character of the toppling process.
Indeed, the general relation is recovered in a �rough� con-
tinuum approximation of the problem.

A second exception to our general exponent relation is
provided by the study of Dezsö and Barabási �44� of disease
spreading on a scale-free network. The model they consider
starts from the usual contact process, for which it is known
that the epidemic threshold �c vanishes for ��3. This is
similar to the divergence of the critical temperature for an
Ising model with constant interactions on a scale-free net-
work. We have seen that topology-dependent interactions are
a way to get around this and we have discussed this in detail
also for the contact process.

However, Dezsö and Barabási provide an alternative
means of rendering the epidemic threshold finite and thus
offering new avenues for controlling diseases �e.g., eradicat-
ing viruses�. Their strategy consists of curing the hubs with a
probability that scales with the degree k of a node as k. Note
that =0 corresponds to the usual model in which all nodes
are cured with the same probability.

As a result Eq. �69� takes the modified form �44�,

� = A�Q−1�
m

�

k−� k2�

k + �k�
dk , �77�

from which we can derive the following exponent relation:

�� =
� − 2

1 − 
, �78�

with �� the effective topological exponent for an equivalent
model with degree-independent curing rate ��=0�. Curi-
ously, this new relation is akin to that of the previous excep-
tion �sandpile model�, but this coincidence has to our insight
no significance.

VII. DISCUSSION

In this paper, we investigated the critical properties of an
Ising model and a contact process with topology-dependent
interactions on scale-free networks. The interaction strength
between two spins, or the infection rate between two indi-
viduals, was assumed to be proportional to �kikj�−�. We have
developed mean-field theories for these models from which
our main result follows: the critical behavior can always be
related to that of the corresponding model with homoge-
neous couplings ���=0� on a network with a modified de-
gree distribution ��, where �� is given by Eq. �12�. Due to
the small-world property of scale-free networks, mean field
theory is generally believed to be exact. This expectation is
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found to be true also in the present case. We performed ex-
tensive numerical calculations for the Ising model on a BA
network, focusing on the cases �=1/2 �the SAN, which was
the original motivation for the present work� and �=1/3. We
used two techniques: “numerically exact” studies with the
cavity approach, and Monte Carlo simulations. The first ap-
proach assumes the absence of loops in the network, which is
a good approximation for a BA network. The Monte Carlo
calculations approximate the true thermal average by an av-
erage over a finite set of well chosen spin configurations.
Within their numerical accuracy, both approaches give the
same results. More importantly, they provide strong evidence
that the exponent relation �12� is correct.

For static network ensembles it is possible to obtain an
exact equation for the location of the critical temperature
from the replica approach, see Eqs. �55� and �56�. A simpler
equation for this quantity, Eq. �32�, can be derived from the
Bethe-Peierls approximation. From the numerical values
listed in Table I, it can be seen that this simple aproach gives
results that are accurate to better than 1%. From the table one
also observes that the differences in the critical temperature
as obtained from the different approaches are very small for
Q	4.

Besides the contact process, the behavior of several other
�non�equilibrium models have been studied on scale-free net-
works. In particular, we mention here diffusion-annihilation
�45� and the Bak-Sneppen model �46�. In both cases, the
critical behavior shows a � dependence that is reminiscent of
that of the Ising model and the contact process. It remains to
be investigated whether appropriately extended versions of
these models obey the relation �12� or whether they follow
modified transformation laws as we found to be the case for
the sandpile model of Ref. �43� or the modified contact pro-
cess of Ref. �44�.
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